Word Relatives in Context for Word Sense Disambiguation
نویسندگان
چکیده
The current situation for Word Sense Disambiguation (WSD) is somewhat stuck due to lack of training data. We present in this paper a novel disambiguation algorithm that improves previous systems based on acquisition of examples by incorporating local context information. With a basic configuration, our method is able to obtain state-of-the-art performance. We complemented this work by evaluating other well-known methods in the same dataset, and analysing the comparative results per word. We observed that each algorithm performed better for different types of words, and each of them failed for some particular words. We proposed then a simple unsupervised voting scheme that improved significantly over single systems, achieving the best unsupervised performance on both the Senseval 2 and Senseval 3 lexical sample datasets.
منابع مشابه
رفع ابهام معنایی واژگان مبهم فارسی با مدل موضوعی LDA
Word sense disambiguation is the task of identifying the correct sense for the word in a given context among a finite set of possible sense. In this paper a model for farsi word sense disambiguation is presented. The model use two group of features: first, all word and stop words around target word and topic models as second features. We extract topics from a farsi corpus with Latent Dirichlet ...
متن کاملUnsupervised word sense disambiguation using WordNet relatives
This paper describes a sense disambiguation method for a polysemous target noun using the context words surrounding the target noun and its WordNet relatives, such as synonyms, hypernyms and hyponyms. The result of sense disambiguation is a relative that can substitute for that target noun in a context. The selection is made based on co-occurrence frequency between candidate relatives and each ...
متن کاملA Review Of Literature On Word Sense Disambiguation
lexical ambiguity is a fundamental characteristic of language. Words can have more than one distinct meaning. Word sense disambiguation is defined as the problem of computationally determining which”sense”of a word is correct in given context. Word sense disambiguation is a task of classification where word senses are the classes, the context provides the evidence, and each occurrence of a word...
متن کاملA Supervised Word Sense Disambiguation Method Using Ontology and Context Knowledge
Word Sense Disambiguation is one of the basic tasks in Natural language processing. It is the method of selecting the correct sense of the word in the given context. It is applied whenever a semantic understanding of text is needed. In order to disambiguate a word, two resources are necessary: a context in which the word has been used, and some kind of knowledge related to the word. This paper ...
متن کاملNoun Sense Induction and Disambiguation using Graph-Based Distributional Semantics
We introduce an approach to word sense induction and disambiguation. The method is unsupervised and knowledge-free: sense representations are learned from distributional evidence and subsequently used to disambiguate word instances in context. These sense representations are obtained by clustering dependency-based secondorder similarity networks. We then add features for disambiguation from het...
متن کامل